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LIQUID CRYSTALS, 1993, VOL. 13, No. 1, 23-30 

A matrix method for modelling liquid crystal textures 

by TSUNEHISA KIMURA and DEREK G. GRAY* 
Paprican and Department of Chemistry, Pulp and Paper Research Centre, 

McGill University, Montreal, Canada H3A 2A7 

(Received 28 April 1992; accepted 17 August 1992) 

A simple method for modelling the textures of liquid-crystalline phases, recently 
proposed by Bedford et al., is here rewritten in matrix form. A formal similarity is 
found between their method and the continuum theory of liquid crystals. 
Disclination patterns are simulated by solving a modified matrix equation. 

1. Introduction 
Recently, Bedford, Nicholson and Windle [ 11 proposed a simple lattice model for 

textures in liquid crystals. Using an interaction energy of the Maier-Saupe type [2,3] 
between two adjacent lattice sites, with a truncation of higher terms in the Taylor 
expansion, they derived a simple equation determining the orientation of the director at 
a lattice site. They obtained disclination patterns from an initial random configuration 
by selecting a lattice site at random and determining the orientation of the director at 
the site. The process was repeated until the disclination pattern developed. Their 
iterative method permitted the development of disclination to be followed. 

Here, we convert their equation into a matrix form and analyse the effect of periodic 
and fixed boundary conditions. We also derive a modified matrix equation in order to 
apply the matrix method to various fixed boundary conditions. A formal similarity 
between the method of Bedford et al. and the continuum theory of Frank [4] is 
discussed. 

2. Matrix analysis of BNW model 
In the two dimensional lattice model employed by Bedford et al. [l] (hereafter 

referred to as BNW), cell k,  specified by the angle 4 k  of the director to a reference 
direction, can interact with its four nearest neighbour cells to give the interaction 
energy, Ek, expressed as 

with k‘ indicating a nearest neighbour. Differentiating this function with respect to $k 

yields 

which indicates that the value +k of the centre cell is given by averaging the values of its 
four adjacent cells. On the other hand, the two dimensional continuum theory with the 

* Author for correspondence. 
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24 T. Kimura and D. G. Gray 

one constant approximation [4,5] shows that the director field 4(x, y) satisfies the 
following differential equation: 

Here, 4 (x, y) is the angle of the director to the x axis, corresponding to +k in equation 
(1). Applying the finite difference method [6] to equation (3), we obtain a discrete 
equation as follows: 

or 

where i and j correspond to x and y and i+ 1 and j +  1 correspond to the nearest 
neighbours of i andj, respectively. Equation (4) indicates that the value 4ij for the centre 
cell is the average of the values of its four adjacent cells, 4i-l,j,  4i+l,j, 4i,j-l, and 
c # ~ ~ , ~ +  Thus, equation (4) is equivalent to equation (2). This similarity is not surprising 
because the energy density function derivable from BNW theory has the same 
functional form as that for the continuum theory (see Appendix for a comparison of the 
two theories in terms of energy density function). Since equation (2) holds for every cell 
k in a two dimensional region R under consideration, we obtain a set of linear 
equations, written in a matrix form as 

A 4  = b, ( 5 )  

where 4 = { 4k} and b = {bk} (1 < k < n2) are vectors and A = {Akm} (1 < k, rn < n2)  is a 
matrix. The values of A and b depend on the conditions imposed at the boundary of the 
region $2. n2 is the total number of cells in the system. 

Now we examine equation (5) using a simple system with 4 x 4 cells shown in figure 
1. For a system with a periodic boundary condition, equation (5) is written as 

A P 4  = 0, (6) 
with A,  given in the table. Here, the constant term b in equation (5) vanishes. Since the 
equation dealing with a boundary, say 42 in figure 1, is written as $1 + & + 46 + 414 

Figure 1. Assignment of 4i and boundary value Bi for the system with n=4.  
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Modelling textures 25 

-44z =0, no constant term appears in equation (6). A numerical analysis of A ,  using 
the singular value decomposition (SVD) method [6] shows that the rank of A, is 
15 (= nz - 1) and the solution of equation (6) is given by 

41 = 42 =. . . =4,,=constant, (7) 

indicating that the only conformation permitted to the system with a periodic 
boundary condition is that with uniform orientation. On the other hand, for the system 
with a fixed boundary condition, equation (5) is written as 

A f 4  = b, (8) 
with A, and b given in the table. Here, the constant term bin quation (5) does not vanish. 
Since the equation dealing with a boundary, say 4z in figure 1, is written as d l  + &+ qb6 
-4& = - O,, a constant term, - O,, appears in equation (8). Numerical analysis of A, 
using the SVD method shows that the rank of A, is 16 (= n2), hence the inverse matrix 
exists and the solution of equation (8) is given by 

4=A;'b, (9) 
where A;' is the inverse of A,. The SVD analysis for systems with n=2, 3, 5, and 
6 shows that the same tendency as for n=4 holds for these values of n, i.e. the 
rank of matrix A is n2 - 1 for the periodic boundary condition and n2 for the fixed 
boundary condition, and the solution for the former condition is given by 
41 = 42 = . . . = 4; =constant, while that for the latter condition is given by 4 =A;  'b. 
The same trend is expected for larger systems. 

Extension of the matrix method to three dimensions is not trivial, due to the non- 
linear nature of the three dimensional analogue to equation (4). 

3. Alternative matrix method 
In this section, we derive an alternative to equation (8) in order to apply the matrix 

method to systems with boundary conditions that are selected to encourage the 
formation of disclinations. For a two dimensional region containing a disclination, the 
boundary value of Oi (see figure 1) changes by 27cs with one single turn around the 
boundary; here, s is the strength of the disclination and has an integer or a half integer 
value. As a result, a jump of 27cs takes place on the boundary. The jump has no physical 
meaning because 4 + 2 m  is equivalent to 4. Thus, equation (8) does not work 
appropriately, and requires some modification. 

For this purpose, we go back to the original equation of BNW, 

and the condition aEk/a$bk = 0: 

from which equations (1) and (2) were derived for small 4 k r  - 4,' values, respectively. 
Rewriting equation (1 1) as 
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26 T. Kimura and D. G. Gray 

1 - 4  1 0 0 1 0 0 0 0 0 0 0 1 0 0 
0 1 - 4  1 0 0 1 0 0 0 0 0 0 0 1 0 
1 0 1 - 4  0 0 0 1 0 0 0 0 0 0 0 1 
1 0 0 0 - 4  1 0 1 1 0 0 0 0 0 0 0 
0 1 0 0 1 - 4  1 0 0 1 0 0 0 0 0 0 
0 0 1 0 0 1 - 4  1 0 0 1 0 0 0 0 0 
0 0 0 1 1 0 1 - 4  0 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 0 - 4  1 0 1 1 0 0 0 
0 0 0 0 0 1 0 0 1 - 4  1 0 0 1 0 0 
0 0 0 0 0 0 1 0 0 1 - 4  1 0 0 1 0 
0 0 0 0 0 0 0 1 1 0 1 - 4  0 0 0 1 
1 0 0 0 0 0 0 0 1 0 0 0 - 4  1 0 1 
0 1 0 0 0 0 0 0 0 1 0 0 1 - 4  1 0 
0 0 1 0 0 0 0 0 0 0 1 0 0 1 - 4  1 
0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 - 4  

Matrix A,  for periodic boundary condition and matrix A, and b for fixed boundary condition. 

A, = 

A ,  = 

‘ - 4  1 0 0  1 0 0 0 0 0 0 0 0 0 0 0  
1 - 4  1 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 1 - 4  1 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 1 - 4  0 0 0 1 0 0 0 0 0 0 0 0 
1 0 0 0 - 4  1 0 0 1 0 0 0 0 0 0 0 
0 1 0 0 1 - 4  1 0 0 1 0 0 0 0 0 0 
0 0 1 0 0 1 - 4  1 0 0 1 0 0 0 0 0 
0 0 0 1 0 0 1 - 4  0 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 0 - 4  1 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 1 - 4  1 0 0 1 0 0 
0 0 0 0 0 0 1 0 0 1 - 4  1 0 0 1 0 
0 0 0 0 0 0 0 1 0 0 1 - 4  0 0 0 1 
0 0 0 0 0 0 0 0 1 0 0 0 - 4  1 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 1 - 4  1 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 1 - 4  1 

\ 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 - 4  

b =  

-06-0, 

- 04 
-0,-0, 
- 0 8  

-01 
- 09 

0 
0 

0 

and putting a = 1/4 as an approximation, we obtain a Set of equations for cos 24k and 
sin24, similar to equation (2). Equation (12) can be readily transformed into matrix 
forms as 

A,S=b,  and A,C=b,, (13) 

S k  = Sin 24k and Ck = cos 24k. (14) 

where the elements of vectors S and C are defined as 

The elements of b, and b, are calculated in the same way as in the table by replacing Bi 
with cos28, and sin28, respectively. A, is the same as in equation (8). After the two 
matrix equations in equation (13) are solved, 4 k  is determined by 

tan 24k = s k / c k  (15) 

for each k. Here, we notice that equation (15) is the condition for minimum as well as 
maximum; the equation has four solutions, two for minima, 4 and 4 + n, and the others 
for maxima, 4 + n/2 and 4 + 3n/2. Therefore, the orientation with minimum energy for 
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Figure 2. Disclination patterns obtained by matrix method (left) and continuum theory (right) 
for various s values. The number below each pattern indicates the total energy (&,). 

each cell can be determined by the following procedure. First, we pick up one of the 
outermost cells, 4k, which is in contact with a boundary cell ei. Since Bi is given, we can 
choose one of the solutions for $k from equation (15) so as to minimize the interaction 
between Bi and 4k. Index k runs over all the outermost cells having contact with the 
boundary cells. The same procedure is repeated, moving inwards to the next layer of 
cells, using the 4k values determined in the previous step until the procedure arrives at 
the core of the system. After completion of the above process, the first and the second 
derivatives of E ,  (see equation (10)) are calculated for each k to confirm the minimum; 
a vanishing first derivative with a positive second derivative indicates the minimum. 

Figure 2 shows the disclination patterns obtained for the boundary conditions 
encouraging s = f 1/2, k 1, f 3/2, and & 2 disclination in the centre. Also, disclination 
patterns calculated by the continuum theory [4,7], 

4=sY, tanY=y/x, (16) 

are shown for comparison. The root mean square errors estimated by 
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Figure 3. Disclination patterns obtained by matrix method (left) and continuum theory (right) 
for s=  f 1/2 and & 1 with a decentralizing boundary condition. The number below each 
pattern indicates the total energy (Et,,,). 

are 0.2,1.1,1.9, and 0.7" for patterns by the matrix method and 02,0.7,2.8 and 4.8" for 
patterns by the continuum theory. A large (T value of 2.8 and 4.8" for s = & 3/2 and f 2 
in case of the continuum theory is mainly due to some central cells. A comparison of the 
two sets of (T indicates that the accuracy of the numerical calculation is satisfactory. 

In the case of Is1 > 3/2, the patterns obtained by the matrix method do not reproduce 
the patterns calculated by the continuum theory. Complicated disclination patterns in 
the cores, observed for the continuum theory, are split into a number of s = f 1/2 type 
patterns. On the other hand, a splitting does not occur for s =  f 1. In this case, the 
procedure for determining the minimum orientation with respect to an outer cell does 
not work because the four core cells show negative second derivatives. The failure of the 
procedure might be attributed to the higher symmetry in the boundary conditions 
combined with the symmetry inherent in the procedure. In fact, as seen from figure 3, a 
similar splitting is also observed even for s= & 1, in those cases where a boundary 
condition is selected to encourage the generation of disclinations that are shifted away 
from the centre of the system (decentralizing boundary conditions); s =  f 1 dis- 
clinations tend to be converted to s = f 1/2 disclinations. Disclination patterns for 
s =  f 1/2 are stable for the decentralizing boundary condition (see figure 3). 
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Figure 4. Logarithmic plot of total energy (Elo,) against the absolute value of the strength of 
disclination, Is(, obtained for the continuum theory with n= 18. 

The above observation might be explained in terms of the total energies of the 
systems shown in figures 2 and 3, evaluated by means of the following equation: 

A comparison of the total energies for the patterns obtained by the matrix method and 
by the continuum theory shows that for systems with Is1 > 3/2, the total energy of the 
former is always smaller than the latter. This indicates that systems with a disclination 
of higher strength tend to create a couple of disclinations of lower strength in order to 
lower their total energy [8,9]. 

In figure 4, a logarithmic plot of the total energy Etot against Is1 is shown for the 
patterns obtained for the continuum theory. We find 

E~~~ = 1 4 1 . 5 7 ,  (19) 
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30 Modelling textures 

where the index of 1.57 is smaller than the theoretical value of 2 [S]. The discrepancy 
might be partially attributed to the underestimation of the core energy, especially for 
large IsI, due to the discrete modelling employed here. In fact, the core is represented by 
only four cells which are insufficient to describe the continuous situation: For s = & 2, 
for example, four core cells even take a parallel alignment, forming a low energy core. In 
figure 5, the effect of lattice size on the index is shown. The index increases gradullly 
with increasing lattice size from 4 to 18 (the lattice size in figures 2 and 3). The 
asymptotic value seems slightly larger than 1.57. 

We thank the Natural Sciences and Engineering Research Council of Canada for 
support. 

Appendix 
Following Vertogen [lo], we write the energy density function at site r in two 

dimension as follows: 

E(r) = j jJ(rf)(+(r + rl) - 4(r))2 dr’, 

where 4 is the director angle to a reference direction, and J(r’) is a function of the 
distance rf between two directors 4(r + r f )  and 4(r). We expand the term of the difference 
of two angles with respect to r’ and truncate higher terms because J(r’) is a rapidly 
decreasing function of rf  to obtain: 

4(r + r’) - +(r) = (V4). r’. 

Approximating the above term by its maximum value, we obtain 

E(r)g j jJ (r ’ ) r f2(V4)2drf  

This is compared to the energy density function in the continuum theory with elastic 
constant K [5], 

from which equation (3) is derived. 
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